GETTING STARTED IN BUILDER¹
WITH AN AUTOCAD DWG DRAWING

This Technical Note is intended for the first time users of ADAPT-Modeler or Floor Pro, who want to generate a three dimensional structural model, starting from an AutoCAD drawing. The Technical Note assumes that the user is not much familiar with AutoCAD. Also, no prior preparation for simplification in the creation of a structural model is assumed to have been made in the AutoCad drawing (dwg drawing). Following the format of a detailed tutorial, the Technical Note walks you - the user - step by step through the generation of a complete model and its validation.

The Technical Note assumes that you have already reviewed the companion Technical Note² Design Steps Using Builder Floor-Pro, where you find an overview of the modeling and design process along with the steps that you have to follow for a complete design, including the generation of structural drawings.

The material presented is organized as follows:

1 – ADAPT Builder User Interface
2 – Import AutoCAD Drawing
3 – Calibrate the Imported Drawing
4 – Change of Origin
5 – Automatic Generation of Polygons
6 – Set Floor-to-Floor Heights
7 – Transformation of Graphical Entities to Structural Components
8 – Creation of Structural Components
9 – Establish Component Connectivity
10 – Clear the Display From Non-related Entities
11 – Validate the Structural Model

1 – ADAPT Builder USER INTERFACE

ADAPT-Modeler is the program module of the BUILDER platform that you use to generate the structural model, be it for analysis and design using finite elements (FLOOR-Pro), or strip method (ADAPT-PT/RC). Figure 1-1 shows the screen of the Modeler, with several of the many toolbars available opened for display. A detailed description of the user interface is given in the Modeler’s User Manual.

ADAPT-Modeler operates the same way as other Windows programs. Program tools are accessed from one of the toolbars provided by the program or through the menus provided in the menu bar at the top of the screen. Toolbars may be opened, closed, “docked” to the edge of the screen or dragged.

¹ Copyright ADAPT Corporation 2007
² TN230 PT Design Steps Using Builder Floor Pro
to any position on the screen as View menu item. Tools can also be accessed by clicking the right mouse button while the cursor is in the Menu Bar or Toolbar areas of the screen.

FIGURE 1-1: ADAPT-MODELER USER INTERFACE

The User Information Bar at the bottom of the screen displays tool-specific information and the information that users may be asked to enter for specific program procedures.

The Status Bar at the bottom, but last, displays information such as mouse cursor coordinates, current system of units selected, snapping status, and gridline spacing and status. A short hint describing the function of each tool displays, when the mouse cursor is placed over a tool.

Mouse Function and Operation
The primary function of the mouse is through its left-click. Depending on the mode of the program, as outlined in the next section, the left-click will result in selecting the entity below the cursor, inserting an entity or performing an operation at the location of the cursor. The right click of the mouse opens the following dialog window listing the anticipated most common operations.

FIGURE 2-2: MOUSE RIGHT CLICK WINDOW
How to Abandon an Operation
To abandon an operation you have already started, such as drawing a polygon, press the Esc key.

How to Close an Operation
When you want to accept and close an operation, such as closing a polygon, or the outline of an opening you have been drawing, press C or End key.

Operation Modes of the Program
At any given instance in its operation, the program is in one of the following modes. You will find, it is critical to know the program’s current mode and be able to change it from one to the other. The program’s modes are best identified by the shape of the cursor. They important modes are:

- **Selection or Pick Mode**: Left click to select an entity. When an entity is selected, its color changes. Double left click to open the property window of an entity.
- **Creation Mode**: In this mode the program is ready to generate a component, such as a slab or rebar. Press Esc to exit this mode.
- **Other Modes**, such as... Other similar modes are self-explanatory.

Selection Toolbar
Among other toolbars of the program, the Selection Toolbar contains several of the most common tools you will be using. Hence, it is reproduced below with a short description of the critical tools for model generation.

FIGURE 3-3: MOUSE RIGHT CLICK WINDOW

- **Hint Mode**: When activated, the arrow displays the identification of the entities to which it points. In this mode you cannot select an entity by clicking on it.
- **Window Selection**: When this tool is highlighted, the Pick/Select mode is active. You can select an entity by clicking on it, or a group of entities by opening a window around the items while the left mouse key is held down. When in this mode, the cursor will be in the form of a small square. Double-clicking on an entity opens its properties dialog box.
- **Lasso Selection**: This tool allows you to draw an arbitrary polygon around a series of entities. When the lasso is closed, all entities located within or along the lasso perimeter are selected. To use this tool, do the following:
Click on the Lasso Selection tool.

- Draw segments of the polygon around the entities to be selected.
- Press C to close the lasso. The entities inside the lasso are selected automatically.

Path Selection. With this tool you can select entities by drawing a polyline through them. To use this tool, do the following:

- Click on the Path Selection tool.
- Draw polyline through the entities to be selected.
- Press C to end the line. The entities through which the line passes will be selected automatically.

Select All. This tool selects all the entities visible on the screen.

Move Selection. This tool enables you to move the entire group of entities that are currently selected. Pick a vertex of one of the entities in the selection and drag the entire group to the new location.

Move Selected Point. With this tool you can move only the vertex of an entity to a new location, while the positions of the remainder of the entity’s vertices remain unchanged.

Item’s Properties. When you select an entity, followed by clicking on this tool, it opens the property window of the entity.

2– IMPORT AUTOCAD MODEL INTO BUILDER

In this section you will import an existing floor plan in AutoCAD dwg format to Modeler program. The same procedure applies, when you import a drawing in DXF format. When imported, the entities such as columns and walls will be shown by lines, polylines or polygons. In subsequent sections, you will learn how to convert them to structural components. The plan view of the floor system you will work on is shown below in a screen shot from AUTOCAD.
Import the AutoCAD file into ADAPT Builder

- Open Builder and ensure that in the first screen (splash window), you select American as the system for units, if you wish to generate the model in American system of units. Otherwise select SI.
- In Builder, select File ➤ Import ➤ DWG/DXF. Browse for the AutoCAD file of this Technical Note. It is called TN246_US.dwg. Select the file. After a short while the AutoCAD drawing will appear on the Modeler screen.
- If the drawing is not displayed, click on the “Zoom-Extents” tool to have the imported drawing enlarged and displayed centered on the screen.

3 – CALIBRATE THE IMPORTED FILE

Each time you import a drawing to Builder from AutoCAD you should specify one of its dimensions, in order to scale the drawing to the correct size, before converting it to a structural model. In the normal course of model generation, the program will guide you do so\(^3\). You will be asked to select two points in the model and specify the distance between them. The program will scale the remainder of the file to match the distance you have specified. It is advisable to select points that are far apart, and use snapping tools. This increases the accuracy of the structural model you create.

\(^3\) If you miss this step, you can always you can activate the calibration tool by selecting the menu item “Calibrate Drawing” from the “Tools” pull-down menu. Also, you can “scale” a structural model, once you have generated it.
Calibrate the drawing as follows:

- Answer Yes to the above dialog window.
- You will be asked at the bottom of the computer screen on the command line to enter the information needed for calibration. Use the snap tool during calibration. Consider two points on the plan, where you know the distance between them. Observe the length of the floor slab in Fig. 3-2 (114 ft, 49m). This is a good dimension to select.

- With the snap to perpendicular on, click on the “start” point of the calibration line (Fig. 3-3a);
- next, click on the end point of the dimension line (Fig. 3-3b);
- observe the prompt at the bottom line of the computer screen and enter the distance between the points (114 ft, 49m); and
- close by pressing Enter key.

The above re-sizes the drawing to the scale you have selected.

- Center the model on the computer screen, by pressing the zoom extents tool.

Each time you import a drawing to Builder from AutoCAD you should specify one of its dimensions, in order to scale the imported drawing to the correct size. You will be asked to do so by the program by selecting two points in the model and specify the distance between them. It is advisable to select points that are far apart and snapping tools to create an accurate model of the structure.
4 – CHANGE OF ORIGIN

Once you are done with the calibration of the model generated, a dialogue box will appear asking you whether you want to change the origin of the global coordinates for the project. In most cases it is acceptable to select No. In the case which you will be importing several DWG drawings into the same model and have them automatically superimposed, you would select Yes\(^5\). In this case select No.

At this stage, the imported model will look as shown below.

\(^5\) If you plan to import several dwgs into one file and want them to be positioned exactly where you want them, such as exactly over one another, you should change the origin of the coordinate system to a point chosen by you. Say Yes and follow instructions. You can change the origin at a later stage if need be from Tools -> Change Project Origin.
5 – AUTOMATIC CREATION OF POLYGONS

The boundary of slabs, walls, columns and openings are in form of polygons. It is possible that the dwg you have imported does not delineate the outline of all of these entities by polygons. In many instances, the Modeler can assist you to detect the boundary of the entities that are intended to represent structural components, such as columns. This is the first step toward the transformation of graphical entities of the drawing you have imported to structural components of Modeler. In this step, you will use the program to convert to polygons as many of such occurrences as the program can detect.

- In Builder, select Build ➤ Display Modeling Toolbars, this will display all the toolbars you will be using to convert the 2D entities into 3D structural components. Most of the operations will be carried out using the tool bars in Fig. 5-1. One lists the tools that changes (transforms) a drawing entity to a structural component. The other contains the tools for creating (building) new structural components.

![Transformation Toolbar](image1)

(a) Transformation Toolbar

![Creation Toolbar](image2)

(b) Creation Toolbar

FIGURE 5-1 STRUCTURAL COMPONENT GENERATION TOOLS

- Click on “Transform Polygon ➤ Tool. The program prompts the followng, indicating that it could locate 36 instances where connected lines could be converted to polygons

![Message Box](image3)

FIGURE 5-2

- Next you will display the polygons generated in order to convert them to structural components. To speed up the conversion, you will hide from display the items that are not necessary and limit the display to the polygons for conversion to structural components. From the Layers Setting tool open the layers dialog window.
- Click on the button All Layers Off to turn off all the layers.
- Locate the layer Polygons_From_Lines, as shown in Fig. 5-3. This will display the polygons generated by the program (Fig. 5-4). Note that some of the polygons are readily identifiable as intended to represent structural components, such as columns and walls. The polygons that were in the original dwg imported, if any, will not be displayed on this view.
6 – SET FLOOR TO FLOOR HEIGHTS

The entities shown on the screen at this time are 2D. There is no height associated with them. You need to define a default value for the length of these components, such as columns, above and below the floor you are creating. This is done by defining a floor-to-floor distance between the current floor that you are modeling and the floors above and below. This will result in the columns and walls you create to extend initially from the current level to the levels above and below. You can later change the length of each of these components, you need be.

- From creation toolbar click on Level Assignment Tool. The following window opens. Note that the distance between the current plane and the one above and below it is given at 10 ft (3m). Accept the values displayed and close the window. Obviously, you have the option to change these, where the floor to floor heights are different.
At this step, you will convert the polygons that represent structural components, such as columns, to structural components. It is best to change the display to oblique view to better see the 3D components that you transform. Do the following.

- Click on the Top-front-right-view. The following appears.

- Select a polygon that represents a wall, such as the one shown below.
Click on the *Transform Wall* tool to create a wall at this location, with a cross-sectional area defined by this polygon and a height defined by the floor to floor height tool you used above. The following shows the view of the wall created.

Check the properties of this wall by double clicking the left mouse on it. The property window of the wall opens (shown below). Examine the values of the property assigned to the wall. In this Technical Note tutorial, we are not going to change the wall properties, such as its material and height.
Close the property box by clicking on the top right cross on it. However, if you change any of the wall’s properties, you need to click on the confirmation tool to validate your change.

Similar to the transformation of the wall above, select the polygon at the bottom left of the display and transform it to a column as shown below.

Transform the rest of the walls by selecting the rest of the polygons that represent walls as detailed below:
- Keep the control key depressed, while you click on the entity that you wish to add to the selection.
- If you make a mistake and select an entity that you did not intend to be part of the list, keep the control button depressed and click one more time on the item that you want to de-select.
Next select the polygons that are intended to be transformed to columns. Again, keep the control key depressed for adding to the selection. If you make the wrong selection, click on the entity one more time to deselect it. When all the column polygons are selected, the screen looks as shown below.
(a) Display of polygons representing columns

(b) Display of columns and walls transformed from polygons

FIGURE 7 – 8 TRANSFORMED COLUMNS AND WALLS

- The four rectangular polygons on the boundary of the image are each a balcony. Select the one at the bottom left and change it to a slab region using the Transform to Slab Tool.
The balconies are 7” (180 mm) thick and are 1” (25mm) lower than the floor slab at the interior of the building. Next we define the thickness of this balcony and its drop with respect to the rest of the floor system. Once you define the properties of one entity, such as the balcony slab in this case, the subsequent entities that you transform will assume the same property. Double click on the transformed balcony to open its property window (shown below).

If the next entity you transform or create does not assume the properties of the last entity of the same kind you transformed, do the following starting from Settings pull-down menu Settings -> General Settings and check mark the item “Use the properties of the last modified component of the same type as default.”
In the property window of the slab region opened, change the slab thickness to 7” (180mm).

Click on the “Location” tab, and change the “Vertical offset” to 1”. This will bring the balcony 1” (25mm) below the reference plane (floor slab level at the interior of the building). Later, we will generate the main floor on the reference plane.

Select the remainder three polygons that represent balconies and convert them to balconies as shown below.

Open the property box of one of the balconies converted above and verify that its slab thickness is 7” and it is offset by 1” (25mm). If this is not the case, make the necessary correction in the property window of the balcony opened and confirm your entry by clicking on .
There are three openings in this floor system. Click on one of the polygons that represents an opening for its transformation. You will note, as shown in the figure below, that the selected polygon is a triangle. The program did not recognize the boundary of the opening as the polygon that represents the outline of the opening. Leave for now the conversion of these polygons to openings. At a later stage, you will create them using the creation tool.

![CONVERSION OF POLYGON TO OPENING](image1)

FIGURE 7-13 CONVERSION OF POLYGON TO OPENING

By now, you have handled all the polygons that were created through the *Transform Polygon* tool. The dwg file imported may have included polygons that are not displayed on this view. If any, you will convert those polygons, when other layers are turned on.

View the components created so far for the visual confirmation of the validity of the work done. Click on the *View Model tool* to obtain a 3D solid display of the components generated. Rotate the assembly of the components and visually confirm their validity (Figure below).

![3D VIEW OF STRUCTURAL COMPONENTS](image2)

FIGURE 7-14 3D VIEW OF STRUCTURAL COMPONENTS
8 – CREATION OF STRUCTURAL COMPONENTS

To create the remainder of the structural components from AutoCad drawing, you have to trace each. You will find, the tools that are available for you to make the tracing and conversion are fast and simple. The best is to start by going through the layers that were imported from AutoCAD, and select only those layers for view that include the components you plan to create. This may not be practical in all cases, since some layers may have more than what is required, or may not have all that you need, as is the case in the dwg we have imported. Do the following

- Exit the 3D solid viewer
- Display the model on plan view
- Open the Select layers dialog window (shown below).

![FIGURE 8 – 1 SELECT LAYERS DIALOG WINDOW](image)

- Turn all layers on. Turn “DIM” and “TEXT” layers off. Click on OK to go back to the model. The plan shown below appears.

![FIGURE 8 – 2 PARTIAL VIEW OF THE FLOOR SYSTEM](image)
You will use the tools listed below to trace the lines define the boundaries of slabs and openings:

- Snap tools, in particular snap to intersection, snap to end, snap to nearest
- Insert point
- Move point
- Delete point

In navigating over the drawing to “pan” and “zoom” you can use the mouse middle button as follows:

- Roll the middle button to “zoom “in and out; and
- keep the middle button depressed and move the mouse to “pan.”

You will now create the main slab of the floor system by tracing its outline on the dwg drawing. Click on the create slab tool from the Build Toolbar below:

Turn all the snap tools off from the toolbar below:

![Snap Toolbar](image)

FIGURE 8-3 SNAP TOOLBAR

Click on the snap to intersection “ to turn it on.

Starting from one corner of the slab outline, such as top left, bring the cursor close to the slab corner and left click, when the snap sign “yellow X” shows up (Fig. below).

FIGURE 8-4 SNAP TO INTERSECTION AT THE CORNER OF SLAB OUTLINE

Continue tracing the outline of the slab from vertex to vertex, each time click the left mouse when the cursor snaps to an intersection point. In the course of your tracing, it is likely that you would miss a point, or click at the wrong position, or have to quit the tracing prematurely. This is not critical to your work, since you will subsequently correct the mistakes through the editing
tools. As an example, the figure shown below illustrates a partially completed slab outline with several of the points not correctly snapped at the slab outline. In addition, the slab outline drawn does not cover the entire slab.

FIGURE 8-5 INCOMPLETE CREATION OF SLAB BOUNDARY

- To correct a point that is not snapped correctly on the slab outline, such as the two points shown in the figure above, do the following.
- Zoom in on the location
- Select the slab you have created (figure below)

FIGURE 8-6 INCOMPLETE SLAB BOUNDARY SELECTED FOR EDITING
- Make sure that the cursor is in pick mode (indicated by a small square).
- The vertices of the slab you have created so far are revealed with small squares. Bring the cursor over one such vertex that needs correction, pick it (left mouse), move it close to the correct location until the snapping sign shows, left click the mouse to lock the slab vertex at the correct position.

FIGURE 8-7 VERTEX OF A SLAB BOUNDARY BEING SNAPPED TO CORRECT LOCATION

FIGURE 8-8 VERTEX OF A SLAB BOUNDARY SNAPPED TO CORRECT LOCATION

- In the course of completing and editing the outline of the slab, in addition to insert point you are likely to use the undo tool, if a point you have created is at the wrong
location; use *delete point* , add point, and *move selected point*. Continue with the tracing of the slab outline, until complete as shown below.

![FIGURE 8-9 VIEW OF COMPLETED SLAB BOUNDARY](image)

- View the structure in 3D viewer to visually confirm the work you have done so far. The 3D model should look as shown below.

![FIGURE 8-10 VIEW OF COMPLETED SLAB BOUNDARY](image)

- Next create the openings by clicking on the *create opening* tool, while the snap to intersection tool is on. Trace the outline of each opening. When complete, the structure will look as shown below:
Check the slab thickness and its elevation by opening the slab’s property box (double click on its boundary). You will note its slab thickness is 7” (180mm) which is the default you had for the balcony. Change the slab thickness to 8” (200mm). Next from the location tab, change the vertical offset to 0 in, This will establish the position of the slab 1” (25mm) above that of the balcony. Click on tool to validate your correction. Close the slab’s property box.

9 – ESTABLISH COMPONENT CONNECTIVITY

The structural model you have created is complete and ready to be validated. However, the solution you will obtain will be more accurate, if the top of the walls and columns are shifted below the slab, as opposed to have them extended to the top of the slab in the model’s current condition. To adjust the connectivity of the columns and walls to the slab, do the following:

- From Build pull down menu -> Preprocessing -> Establish Component Connectivity.
- View the model and verify that the columns and walls terminate at the soffit of the slab.

10 – CLEAR THE DISPLAY FROM NON-RELATED ENTITIES

At this stage, it is a good idea to clear from the display of the structural model from the unnecessary lines, text and information, before proceeding to the validation of the model you have generated. Each of the structural components you have generated is placed in its own layer. The layers generated by the program for your current model are:

- Current_plane_column
- Current_plane_opening
- Current_plane_slab_region
- Current_plane_wall

Do the following:

- Open the layer dialog window (shown below)
- Click on the Label tab to organize the list of layers alphabetically
- Turn all layers off
- Turn on only the component layers listed above
- Press OK

FIGURE 10 – 1 SELECT LAYER DIALOG WINDOW

The model you have created should look like the image below

FIGURE 10 – 2 COMPLETE PLAN OF THE STRUCTURAL MODEL

11 – VALIDATE THE STRUCTURAL MODEL

This stage of the work is applicable if you plan to use FLOOR-Pro program for a finite element analysis and design of the structure. If you plan to use the model to generate data for ADAPT-PT or ADAPT-RC, the following is not applicable to your work. For export to ADAPT-PT/RC the validation is achieved by a close visual examination of the model generated.

For analysis and design using FLOOR-PRO, before moving ahead with the rest of data input, such as definition of material properties, loads and more, it is important to validate your work. The validation is done by obtaining a solution for selfweight of the structure using the default values of the program and visually examining the deflected shape of the floor system. A close scrutiny of deflected shape of a floor system under selfweight, can reveal many errors in model generation.
From FEM pull down menu, click on automatic mesh generation. Accept the default settings of the program. Press OK to close the window (shown below)

![Automatic Mesh Generation Dialog Window]

FIGURE 11-1 FINITE ELEMENT MESH GENERATION DIALOG WINDOW

Accept all the prompts of the program and respond by OK, continue, and affirmative as the case may be. The mesh generated by the program is likely to be similar to the one shown below:

![Finite Element Mesh of the Structural Model]

FIGURE 11-2 FINITE ELEMENT MESH OF THE STRUCTURAL MODEL

Save the solution when prompted by the computer.

UP TO HERE

From FEM pull down menu, select view analysis results. Once in solution viewer, select serviceability load case, deformation in Z-direction, and click on the tool to see the deflection,
Examine the deflected shape for the validity of the solution.